A Review: Analyzing How VO\textsubscript{2} Kinetics Limit Exercise Performance

James Harvey

Newcastle University, Newcastle-Upon-Tyne, United Kingdom

ABSTRACT

Harvey JA. A Review: Analyzing How Oxygen Uptake Kinetics Limit Exercise Performance. JEPonline 2011;14(3):67-73. This brief review analyzes the effect of VO\textsubscript{2} kinetics on exercise performance. It will focus on exercise above and below the lactate threshold (LT), and how VO\textsubscript{2} kinetics and other factors modify exercise performance in different physiological states. Below the LT, VO\textsubscript{2} is not found to be the limiting factor in exercise performance. Above LT, an increasing number of factors must be taken into consideration though VO\textsubscript{2} kinetics play a major role as VO\textsubscript{2} max is approached.

Key Words: VO\textsubscript{2} max, Lactate Threshold
INTRODUCTION

Exercise performance depends on factors such as substrate availability, training history, exercise intensity, cardiovascular performance, and VO₂ kinetics. Faster VO₂ kinetics are characteristic of athletes with a high exercise tolerance and VO₂ max (21). Biomechanical and environmental factors can also limit exercise performance, but these will not be discussed. Oxygen uptake kinetics and exercise intensity control the type of substrate used, the rate of anaerobic and aerobic respiration, and the tolerable duration of exercise (6). A greater proportion of energy sourced from aerobic respiration, means less reliance on fatigable anaerobic mechanisms. While VO₂ kinetics represents only one factor that influences exercise performance, the question is what extent does VO₂ kinetics limit the exercise performance? Exercise cannot be considered as a whole, but must be analyzed at different intensities. Thus, to better understand the kinetics involved, this review is looks at exercise below and exercise above the lactate threshold (LT).

The LT is a specific exercise intensity at which blood lactate begins to rise. Exercise performance is inevitably limited by the body’s ability to produce energy to meet the demands of specific tasks. This energy comes from ATP generated directly or indirectly by aerobic and anaerobic metabolism. Therefore, the substrates of cellular metabolism must be analyzed as to which factors limit exercise performance. For example, while stores of respiratory substrates such as glycogen and free fatty acids could potentially limit long duration exercise, fatigue generally affects an athlete long before depletion of these substrates. A high VO₂ max will increase the tolerable workload of most individuals, especially their capacity to exercise at a higher workload while still remaining below the LT. Muscle fiber types can also alter the rate of fatigue, which can inevitably limit performance. However, this is largely determined by genetics and training and so shall not be discussed in detail.

ONSET OF EXERCISE BELOW LT

Below the LT the body can achieve steady-state VO₂ kinetics and maintain exercise using aerobic respiration. What is limited is the speed at which equilibrium of energy production and use is obtained. This can be measured using the time constant (tVO₂); a value given to measure the time it takes to reach 63% of VO₂ max. Poole et al. (19) showed a close correlation between pulmonary VO₂ and muscle VO₂ kinetics during exercise. Therefore, pulmonary tVO₂ can be used as an indicator of how quickly the muscles adapt to a new exercise intensity. During this period of adaptation, the energy is supplied by O₂ reserves in the body, ATP stores, the phosphocreatine shuttle, and anaerobic respiration. The energy produced by means other than oxidative phosphorylation is often termed the “oxygen debt” which must be re-paid by regenerating these stores during a period of energy surplus.
The substrates for respiration (O\textsubscript{2}, NADH+H+ and ADP) can be analyzed as possible limiting factors of exercise performance. At moderate exercise intensity (i.e., below the LT), it is unlikely that oxygen provision is the limiting factor. Under normal conditions in a healthy individual arterial blood O\textsubscript{2} saturation is 97.5% (5). Hyperoxia doesn’t improve tVO\textsubscript{2} when compared with normoxia as it will result in virtually no increase in O\textsubscript{2} content of the blood, but hypoxia does impair VO\textsubscript{2} kinetics (13). Hypoxia which is apparent in diseased states or at altitude may lead to VO\textsubscript{2} kinetics becoming a limiting factor, but not to a healthy individual exercising below the LT.

NADH+H+ is another possible limiting factor. This is generated by conversion of pyruvate to Acetyl-CoA, catalyzed by pyruvate dehydrogenase (PDH), and as part of the citric acid cycle (3). Research using prior bouts of exercise to speed VO\textsubscript{2} kinetics has proposed that PDH up-regulation caused by the warm-up results in faster VO\textsubscript{2} kinetics. However studies using dichloroacetate to activate PDH are more reliable as they remove other factors from the equation (such as increased blood perfusion, acidosis and a resultant Bohr shift, and other enzyme activation). Activation of PDH using dichloroacetate increases the rate of supply of NADH+H+, reduces the O\textsubscript{2} deficit and reduces the accumulation of fatigue metabolites, but does not increase tVO\textsubscript{2} (23). However, slow PDH activation may cause slower VO\textsubscript{2} kinetics for some individuals, especially the elderly, as it is shown that these have slower activation of PDH (11).

If provision of NADH+H+, slow PDH activation, and O\textsubscript{2} are not limiting factors in VO\textsubscript{2} kinetics below the LT, then, ADP must be considered. This is provided by the breakdown of ATP at the muscle microfibril, but the ADP must travel back through the mitochondrial membrane porin pores in order to be converted back to ATP using energy from oxidative phosphorylation within the mitochondria. ADP transport depends on porin pore size and this delay in the feedback mechanism limits tVO\textsubscript{2}, a measure of exercise performance below the LT (12). Thus, in considering the evidence below the LT in a healthy individual under normal conditions, VO\textsubscript{2} kinetics does not limit exercise performance. Below the LT, tVO\textsubscript{2} is used as a marker of exercise performance which, if smaller, implies less reliance on O\textsubscript{2}, ATP, and PCr stores, and quicker initiation of aerobic metabolism. It is reasonable to conclude, then, that the supply of ADP and its feedback mechanisms appear to limit exercise performance at this intensity.

EXERCISE ABOVE LT

Above the LT all previously discussed factors must still be taken into account, however the VO\textsubscript{2} slow component must now also be analyzed. The slow component increases the theoretical cost of exercise as calculated from sub-LT values (2,26). It can be seen as the manifestation of muscle inefficiency and fatigue and the effect of both on the energy cost of exercise. There are thought to be many contributing factors, but perhaps the most important is the increase in muscle fiber recruitment. Poole et al. (20) and Rossiter et al. (22) showed that up to 86% of the pulmonary slow component is attributable to the exercise in leg muscles, while the rest is due to increase in respiratory and cardiac function. An athlete’s critical power is a point between the LT and VO\textsubscript{2} max at which the slow component begins to bring about a different outcome. Slow component related inefficiency can limit an athlete’s exercise performance as a large slow component will result in an increased energy cost of exercise below an athlete’s critical power or a shorter duration of tolerable exercise above it (18).

Early work by MacDonald et al. (17) showed that breathing hyperoxic gas resulted in faster on-kinetic responses when exercising above the ventilatory threshold (VT), the point at which ventilation rate begins to rise exponentially (24), and also gave evidence showing this had no effect on sub-VT exercise. When at or near VO\textsubscript{2} max, the oxygen diffusion and delivery systems must be utilized more
to deliver enough oxygen to meet the increased demand, so logically these mechanisms are potential limiting factors of exercise performance. By stimulating a muscle in situ to contract at muscle VO₂ peak and mechanically increasing O₂ delivery, Grassi et al. (9) showed that increasing the rate of O₂ delivery to a working muscle does speed VO₂ kinetics and lower the O₂ deficit. Other research using erythropoietin (27), hyperoxic gas (28), and increased plasma volume (4) to increase O₂ delivery and VO₂ max also increased the tolerable duration of exercise.

Peripheral diffusion of O₂ could ultimately limit VO₂ on-kinetics, and this has been shown to be the case in heart muscle (25), though this is unlikely a limiting factor in skeletal muscle, where a change in the rate of O₂ supply and the VO₂ kinetics are much slower due to slower activation of ATP production and muscle fiber type. Grassi et al. (10) studied this in isolated canine muscle and concluded that O₂ diffusion was not a limiting factor in skeletal muscle VO₂ kinetics.

Grassi et al. (9) found that in spite of increased O₂ delivery, there were still some factors limiting the rate of O₂ utilization within the muscle itself. This metabolic inertia or delayed enzyme activity associated with oxidative metabolism could be caused by a number of factors. It has been shown many times that the slow component can be reduced by a warm-up or “priming” bout of prior exercise (8,15). This increases vasodilation and thus blood flow and the rate of O₂ delivery, but is also thought to increase the activity of oxidative enzymes, provision of substrates and result in more efficient motor unit recruitment patterns (7,15). NO synthase inhibition has been shown to increase the size of the VO₂ slow component in heavy exercise (14), and there are many possible reasons for this such as reduced vasodilatation and muscle blood flow or changes in fiber type recruitment. Research supplementing with nitrates has shown improved VO₂ kinetics and increased motor unit efficiency shown by a reduction in the O₂ cost of exercise (1,16). This is important because O₂ uptake kinetics are an increasingly limiting factor as VO₂ max is approached. However, if the O₂ cost of exercise can be reduced, then, VO₂ kinetics will play less of a role in limiting exercise performance.

Nitrate supplementation could have this effect for a number of reasons such as increased mitochondrial biogenesis, contributing to proton pumping or reducing Ca²⁺ release, however the mechanisms are still unclear. What is evident is that by reducing the O₂ cost of exercise by NO₃⁻ supplementation, the workload of the cardio-pulmonary system is reduced. This has particularly important implications for those with cardiovascular or pulmonary disorders for whom everyday activities frequently require an output close to VO₂ max, as supplementation could potentially improve their tolerance for these activities. Its ability to increase the time to task failure (by up to 16%) also gives its great potential as an ergonomic dietary supplement in the exercising population (1). Therefore, metabolic inertia, muscle fibre type and recruitment patterns, and oxidative inefficiency can also be considered a limiting factor of VO₂ kinetics at high and severe exercise intensities.

CONCLUSION

In order to assess whether oxygen uptake kinetics limit exercise performance one must first define the exercise intensity and duration. Below the LT steady state VO₂ kinetics can be achieved without the appearance of the VO₂ slow component. In this moderate intensity domain, it is tVO₂ that limits the rate at which this steady state can be achieved and to a certain extent the oxygen debt accumulated. Of all the substrates analysed as possible limiting factors, as well as the many enzymes used in aerobic respiration, oxygen uptake kinetics have been conclusively shown not to be a limiting factor in young healthy individuals, and it is ADP that limits exercise performance at this exercise intensity.
Above the LT more factors must be taken into account. The VO$_2$ slow component is a particularly important factor which plays an important role in determining the limiting factors of exercise performance. A variety of techniques have been used to analyze oxygen uptake kinetics and their effects on exercise performance above LT. These and newer studies analyzing the role of NO/NO$_3^-$ in oxygen delivery and oxidative phosphorylation have given stronger evidence that as exercise approaches a subject’s VO$_2$ max, although other factors still contribute, oxygen uptake kinetics play an increasingly important role in limiting exercise performance.

Address for correspondence: Harvey JA, 39 Trevu Road, Camborne, Cornwall, United Kingdom TR14 7AQ. Phone (+44)07825417750 Email. james.harvey1@ncl.ac.uk

REFERENCES

Disclaimer
The opinions expressed in *JEPonline* are those of the authors and are not attributable to *JEPonline*, the editorial staff or the ASEP organization.